25 SÉRIES ENTIÈRES

I. RAYON DE CONVERGENCE

Définition 64 (Rayon de convergence)

Soit une série entière $\sum a_n z^n$

- → **lemme d'Abel** : si $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée alors pour tout $z \in \mathbb{C}$ tel que $|z| < |z_0|$, la série $\sum a_n z^n$ converge absolument.
- → il existe un unique $R \ge 0$ ou $+\infty$ tel que
 - si |z| < R alors $\sum a_n z^n$ converge absolument,
 - si |z| > R alors \overline{a} suite $(a_n z^n)_{n \in \mathbb{N}}$ n'est pas bornée.

$$R = \sup \left\{ r \ge 0, (a_n r^n)_{n \in \mathbb{N}} \text{ born\'ee} \right\} = \sup \left\{ r \ge 0, \lim_{n \to +\infty} a_n r^n = 0 \right\} = \sup \left\{ r \ge 0, \sum_{n \to +\infty} a_n r^n \text{ cv absolument} \right\}.$$

Propriété 110 (Convergence)

Si $\sum a_n z^n$ est une série entière de rayon de convergence R et $u_n: z \mapsto a_n z^n$, alors $\to \sum u_n$ converge absolument sur B(0,R), $\to \sum u_n$ converge normalement sur $\overline{B}(0,r)$ si r < R. notamment $z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ est continue sur B(0,R).

Propriété 111 (Rayon de convergence)

soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayon de convergence R_a et R_b

- - s'il existe n_0 tel que, pour $n \ge n_0$, $|a_n| \le |b_n|$ alors $R_a \ge R_b$,
 - si $a_n = \underset{n \to +\infty}{\bigcirc} (b_n)$ ou $a_n = \underset{n \to +\infty}{\bigcirc} (b_n)$ alors $R_a \ge R_b$, si $a_n \underset{n \to +\infty}{\sim} b_n$, alors $R_a = R_b$

 - → opérations :
 - le rayon de convergence de $\sum (a_n + b_n)z^n$ est supérieur ou égal à min (R_a, R_b) avec égalité si $R_a \neq R_b$,
 - le rayon de convergence de la série produit de Cauchy $\sum c_n z^n$ où $c_n = \sum_{k=0}^n a_k b_{n-k}$ est supérieur ou égal à $\min(R_a, R_b)$
 - \rightarrow **dérivation/intégration**: le rayon de convergence de la série dérivée $\sum na_nz^{n-1}$ et de la série primitive $\sum \frac{a_n}{n+1}z^{n+1}$ est encore R_a .

MÉTHODE - DÉTERMINATION DU RAYON DE CONVERGENCE

On cherche le rayon de convergence de $\sum a_n z^n$:

- \rightarrow critère de d'Alembert (en se ramenant à une série numérique $\sum u_n$ avec u_n qui ne s'annule pas),
- \rightarrow comparaison du terme général (essentiellement recherche d'un équivalent simple de a_n)
- → utilisation de la définition : si on trouve $r \ge 0$ tel que $\sum a_n r^n$ converge, $a_n r^n$ tend vers 0 ou est bornée alors $R \ge r$ si on trouve $r \ge 0$ tel que $\sum |a_n r^n|$ diverge ou $|a_n r^n|$ non bornée/tend vers +∞ alors $R \le r$.
- → utilisation des propriétés pour le rayon de convergence de la somme/du produit de deux séries entières
- → calcul du rayon de convergence de la série primitive/dérivée (si cela simplifie le terme général)

Exercice 1

Déterminer le rayon de convergence des séries entières suivantes

a)
$$\sum n^{\alpha} z^n$$
.

b)
$$\sum \frac{n^2}{3^n + 1} z^n$$
.

b)
$$\sum \frac{n^2}{3^n + 1} z^n.$$
c)
$$\sum \frac{\sqrt{n \ln n}}{n^2 + 2} z^n$$

d)
$$\sum \frac{\operatorname{ch} n}{n} z^n$$

d)
$$\sum \frac{\operatorname{ch} n}{n} z^{n}$$
e)
$$\sum (\sqrt{n+1} - \sqrt{n}) z^{n}.$$
f)
$$\sum n^{n} z^{n}.$$
g)
$$\sum 5^{n} z^{2n+1}.$$

f)
$$\sum_{n} n^n z^n$$
.

g)
$$\sum_{n=0}^{\infty} 5^n z^{2n+1}$$
.

h)
$$\sum \frac{(2n)!}{n!n^n} z^n.$$

i)
$$\sum \sin nz^n$$
.

j)
$$\sum (1 + \frac{1}{n})^{n^2} z^n$$
.

$$k) \sum n! z^{n^2}.$$

1)
$$\sum \frac{z^{n!}}{n!}$$
.

m)
$$\sum \sin(\pi \sqrt{n^2 + 1}) z^n$$
.

Exercice 2

Soit (a_n) une suite convergeant vers 0. On suppose que $\sum a_n$ diverge. Quel est le rayon de convergence de la série $\sum a_n z^n$?

II. SÉRIES ENTIÈRES D'UNE VARIABLE RÉELLE

Propriété 112 (Régularités)

soit $u_n: x \mapsto a_n x^n$ et $\sum u_n$ une série entière de rayon de convergence R > 0, de somme $f(x) = \sum_{n=0}^{+\infty} a_n x^n$

- → **Continuité**: f est définie et continue sur] R, R[et $\sum u_n$ converge normalement sur tout segment [-r, r] avec 0 < r < R.
- → **Continuité au bord** : si $\sum a_n R^n$ converge, alors f est continue en R ($\lim_{x \to R^-} f(x) = \sum_{n=0}^{+\infty} a_n R^n$.
- → **Primitive**: pour tout $x \in]-R, R[$, on a $\int_0^x f(t) dt = \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1}$ (et même rayon de convergence).
- → **Dérivée** : f est de classe \mathscr{C}^1 sur] R, R[et, pour tout $x \in$] R, R[, $f'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1}$ (et même rayon de convergence).
- \rightarrow **Dérivées supérieures** : f est de classe \mathscr{C}^{∞} sur]-R,R[et pour tout $x\in]-R,R[$, $f^{(k)}(x)=\sum_{n=-\infty}^{+\infty}n(n-1)\dots(n-k+1)a_nx^{n-k}$ (et même rayon de convergence).

Propriété 113

Soit $\sum a_n x^n$ une série entière de rayon de convergence R > 0, de somme $f(x) = \sum_{n=0}^{+\infty} a_n x^n$

- → **coefficients**: pour tout $n \in \mathbb{N}$, $a_n = \frac{f^{(n)}(0)}{n!}$, → **parité**: f est paire (resp. impaire) si et seulement si, pour tout $p \in \mathbb{N}$, $a_{2p+1} = 0$ (resp. $a_{2p} = 0$),
- **unicité**: s'il existe $\alpha > 0$ tel que, pour tout $x \in]-\alpha, \alpha[$, f(x) = 0 alors pour tout $n \in \mathbb{N}$, $a_n = 0$.

Exercice 3 (expression intégrale des coefficients)

Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ la somme d'une série entière de rayon de convergence infini. Calculer $A_n(r) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{it}) e^{-int} dt$. Montrer que si f est bornée sur \mathbb{C} , alors elle est constante. La conclusion subsiste-t-elle si f est bornée sur \mathbb{R} ?

III. DÉVELOPPEMENT EN SÉRIE ENTIÈRE

Définition 65 (développement en série entière)

- ightarrow On dit qu'une fonction f d'une variable réelle admet un développement en série entière au voisinage de 0 lorsqu'il existe une série entière $\sum a_n x^n$ de rayon de convergence R > 0 et un réel $\alpha \in]0,R]$ tel que, pour tout $x \in]-\alpha,\alpha[$, $f(x) = \sum_{n=0}^{+\infty} a_n x^n$
- \rightarrow On dit qu'une fonction f d'une variable complexe admet un développement en série entière au voisinage de 0 lorsqu'il existe une série entière $\sum a_n z^n$ de rayon de convergence R > 0 et un réel $\alpha \in]0, R]$ tel que, pour tout $z \in B(0, \alpha)$, $f(z) = \sum_{n=0}^{+\infty} a_n z^n$.

on dit également que f est développable en série entière au voisinage de 0 (ou en 0 sur] $-\alpha$, α [ou $B(0,\alpha)$)

148 année 2023/2024

MÉTHODE - EXISTENCE DU DSE

on veut prouver que f, une fonction \mathscr{C}^{∞} sur] – a, a[, est DSE en 0 :

- \rightarrow pratique : on montre que f(x) coïncide avec la somme d'une série entière par le calcul (somme, produit, dérivée, primitives et DSE usuels),
- \rightarrow théorique : on utilise la formule de Taylor avec reste intégral : on fixe x, on écrit

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt,$$

et on prouve que $R_n(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$ tend vers 0 lorsque n tend vers $+\infty$ (à x fixé). \rightarrow autre : utilisation d'équations différentielles, d'équations fonctionelles...

DSE À CONNAITRE

$$\sin x = \sum_{p=0}^{+\infty} (-1)^p \frac{x^{2p+1}}{(2p+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots \qquad R = +\infty$$

$$\cos x = \sum_{p=0}^{+\infty} (-1)^p \frac{x^{2p}}{(2p)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots \qquad R = +\infty$$

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots \qquad R = +\infty$$

$$\sinh x = \sum_{p=0}^{+\infty} \frac{x^{2p+1}}{(2p+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots \qquad R = +\infty$$

$$\cosh x = \sum_{p=0}^{+\infty} \frac{x^{2p+1}}{(2p+1)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots \qquad R = +\infty$$

$$\cosh x = \sum_{p=0}^{+\infty} \frac{x^{2p+1}}{(2p+1)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n+1}}{(2n)!} + \dots \qquad R = +\infty$$

$$\frac{1}{1+x} = \sum_{p=0}^{+\infty} (-1)^n x^n = 1 - x + x^2 + \dots + (-1)^n x^n + \dots \qquad R = 1$$

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} (-1)^n x^n = 1 + x + x^2 + \dots + x^n + \dots \qquad R = 1$$

$$\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2p+1}}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{2n+1}}{n} + \dots \qquad R = 1$$

$$\arctan(x) = \sum_{p=0}^{+\infty} (-1)^p \frac{x^{2p+1}}{2p+1} = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots \qquad R = 1$$

$$(1+x)^a = 1 + \sum_{n=1}^{+\infty} \frac{a(\alpha-1) \dots (\alpha-n+1)}{n!} x^n = 1 + \alpha x + \frac{a(\alpha-1)}{2} x^2 + \dots + \frac{a(\alpha-1) \dots (\alpha-n+1)}{n!} x^n + \dots \qquad R = 1$$

Calculer le développement en série entière en 0 des fonctions suivantes :

a)
$$\frac{1}{x^2 - 3x + 2}$$

c)
$$e^x \sin(x)$$

e)
$$\arctan\left(\frac{1}{1+x}\right)$$

b)
$$\ln(x^2 - 5x + 6)$$

d)
$$\frac{1}{x^2 - 2x \cosh\theta + 1}$$

f)
$$\int_0^x \cos(t^2) \, dt$$

Exercice 5

- 1) Développer la fonction $f: x \mapsto e^x \sin x$ en série entière et préciser le rayon de convergence.
- 2) En déduire que pour tout $n \in \mathbb{N}$ on a la relation

$$\frac{(\sqrt{2})^n \sin\frac{n\pi}{4}}{n!} = \sum_{0 \le 2k+1 \le n} \frac{(-1)^k}{(2k+1)!(n-2k-1)!}.$$

149 année 2023/2024

IV. EXERCICES

RAYON DE CONVERGENCE

Exercice 6

Soient une série entière $\sum a_n z^n$ de rayon de convergence R.

- 1. Si $\lambda \in \mathbb{C}^*$, quel est le rayon de convergence de la série entière $\sum \lambda^n a_n z^n$?
- 2. Quel est le rayon de convergence de la série entière $\sum a_n^2 z^n$?

Exercice 7

Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. Montrer que le rayon de convergence de $\sum \frac{a_n}{n!} z^n$ est infini. Que peut-on dire si

Exercice 8

Soit $(a_n)_{n\geqslant 1}$ une suite de complexes. Montrer l'équivalence des propriétés suivantes :

1.
$$\sqrt[n]{|a_n|} = \underset{n \to +\infty}{\text{O}} \left(\frac{1}{n}\right)$$
.

2. $\sum_{n>1} n! a_n z^n$ a un rayon de convergence strictement positif.

DÉVELOPPEMENT EN SÉRIE ENTIÈRE

Exercice 9

Développer en série entière la fonction $f: x \mapsto f(x) = \sqrt{2-x}$ et préciser le rayon de convergence.

Exercice 10 (Mines MP 2018)

Soit
$$f: x \mapsto \int_0^{+\infty} \frac{t}{x + e^t} dt$$
.

- 1. Déterminer le domaine de définition de f.
- 2. Montrer que f est développable en série entière en 0 et donner $f^{(p)}(0)$ pour tout $p \in \mathbb{N}$.

SOMMATION DES SÉRIES ENTIÈRES

Exercice 11

Trouver le rayon de convergence des séries entières suivantes et calculer leur somme

a)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+2)} x^n$$

c)
$$\sum_{n=2}^{+\infty} \frac{x^n}{n^2 - 1}$$

e)
$$\sum_{n=1}^{+\infty} \frac{n^2 + 1}{n!} x^n$$

g)
$$\sum_{n=1}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{k!} \right) x^n$$

b)
$$\sum_{n=1}^{+\infty} (n^3 + 3n + 1)x^n$$
 d) $\sum_{n=1}^{+\infty} n^{(-1)^n} x^n$

d)
$$\sum_{n=1}^{+\infty} n^{(-1)^n} x^n$$

f)
$$\sum_{n>1} \frac{x^n}{1+2+\cdots+n}$$

h)
$$\sum_{n=0}^{+\infty} (3 + (-1)^n)^n x^n$$

Exercice 12 (Mines MP 2015)

Soit $f(x) = \sum_{n=1}^{+\infty} \frac{x^{3n+1}}{n(3n+1)}$. Déterminer le domaine de définition de f et calculer f(x).

Exercice 13

Soit, pour $n \in \mathbb{N}$, $a_n = \int_0^1 \frac{t^n}{1+t^2} dt$. Déterminer le rayon de convergence, de la série entière $\sum a^n x^n$ et calculer sa somme.

Exercice 14

Soit $\alpha \in \mathbb{R}$.

- 1. Trouver le rayon de convergence des séries entières de coefficients $\frac{\cos(n\alpha)}{n}$ et $\frac{\sin(n\alpha)}{n}$.
- 2. Lorsque |x| < 1, calculer la somme $A(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n} \cos(n\alpha)$.
- 3. Montrer que pour |x| < 1 on a $\sum_{n=1}^{+\infty} \frac{x^n}{n} \sin(n\alpha) = \arctan\left(\frac{x \sin \alpha}{1 x \cos \alpha}\right)$.

Exercice 15

On pose, pour $n \in \mathbb{N}^*$, $a_n = \frac{(-1)^n}{2n-1} \binom{2n}{n}$ et, lorsque c'est possible, $f(x) = \sum_{n=1}^{+\infty} a_n x^n$.

- 1. Déterminer le rayon de convergence de cette série entière.
- 2. Déterminer une relation entre a_n et a_{n+1} . En déduire une équation différentielle vérifiée par f et calculer f sur son intervalle ouvert de convergence.

Exercice 16

Soit
$$f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2^n n!)^2}$$
.

- 1. Déterminer le domaine de définition de f.
- 2. Déterminer une équation différentielle du second ordre vérifiée par f.
- 3. Montrer que pour tout x > 1, $F(x) = \int_0^{+\infty} f(t)e^{-xt} dt = \frac{1}{\sqrt{1 + x^2}}$.

RÉSULTATS SUR LES SÉRIES ENTIÈRES

Exercice 17

- 1. Soit (a_n) une suite de réels de limite nulle. Soit $f(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n$. Montrer que $f(x) = \int_{x \to +\infty}^{0} (e^x) dx$.
- 2. Quelle relation a-t-on lorsque $\lim_{n \to +\infty} a_n = \ell \neq 0$?

Exercice 18 (Centrale MP 2011)

- 1. Déterminer le rayon de convergence de $L: z \mapsto \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} z^n$.
- 2. On veut montrer que $\exp(L(z)) = z + 1$ pour |z| < 1. Pour cela on considère $u : t \mapsto \frac{\exp(L(zt))}{1 + zt}$. Justifier que u est dérivable sur [0, 1], dériver u est conclure.
- 3. Soit $A \in M_n(\mathbb{C})$. Justifier l'existence de $\alpha > 0$ tel que, pour $|z| \le \alpha$,

$$\det(I_n + zA) = \exp\left(\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} \operatorname{tr}(A^n) z^n\right).$$

Exercice 19 (Mines MP 2019)

Soit f une fonction développable en série entière sur \mathbb{C} . On suppose qu'il existe $d \in \mathbb{N}^*$, A et B dans \mathbb{R}^{+*} tels que $\forall z \in \mathbb{C}$, $|f(z)| \leq A|z|^d + B$. Montrer que f est polynomiale.

Exercice 20 (Mines MP 2017)

Soit $q \in \mathbb{R}$ avec |q| < 1. Montrer que $f: x \mapsto \sum_{n=0}^{+\infty} \sin(q^n x)$ est définie sur \mathbb{R} et développable en série entière. Quel est le rayon de convergence de la série entière?

APPLICATIONS DES SÉRIES ENTIÈRES

Exercice 21

Calculer la somme des séries numériques suivantes :

a)
$$\sum_{n=1}^{+\infty} \frac{1}{2^n n(n+1)}$$

b)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{4^n (2n+1)}$$

c)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1}$$

Exercice 22

On définit pour $x \in]-\pi,0[\cap]0,\pi[$ la fonction f par

$$f(x) = \frac{1}{\sin x} - \frac{1}{x}.$$

- 1. Montrer que f se prolonge par continuité en 0.
- 2. Montrer que ce prolongement est \mathscr{C}^{∞} .

Exercice 23 (CCP MP 2019)

Soit E un ensemble à n éléments On note a_n le nombre de bijections sans point fixe de E dans E.

- 1. Démontrer que $n! = \sum_{k=0}^{n} \binom{n}{k} a_{n-k}$.
- 2. On pose $f(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n$. Démontrer que la série entière de définition de f admet un rayon de convergence R non nul.
- 3. Calculer $e^x f(x)$.
- 4. Soit $n \in \mathbb{N}$, déterminer a_n .
- 5. Un professeur distribue aléatoirement des copies à ses élèves. On note D_n l'événement « aucun des n élèves n'a sa propre copie ». Calculer $\lim_{n \to +\infty} \mathbb{P}(D_n)$.

Exercice 24 (nombre de parenthésages)

Soit u_n le nombre de façon de parenthéser un produit $a_1 \times a_2 \times \cdots \times a_n$, c'est-à-dire le nombre de façons de choisir dans quel ordre on effectue les produits).

- 1. Calculer u_1, u_2 et u_3 .
- 2. Expliquer pourquoi on a, pour tout $n \ge 2$, $u_n = u_1 u_{n-1} + \dots + u_k u_{n-k} + \dots + u_{n-1} u_1 = \sum_{k=1}^{n-1} u_k u_{n-k}$.
- 3. On considère alors la somme $\sum_{n=1}^{+\infty} u_n x^n$ (on suppose que son rayon de convergence est strictement positif). Déterminer une relation vérifiée par la fonction S et en déduire la valeur de u_n .

Exercice 25 (Polytechnique 2020)

Soient $\ell \in]1, +\infty[$, $(a_n)_{n \in \mathbb{N}}$ la suite définie par $a_0 = 1$ et $\forall n \in \mathbb{N}, a_{n+1} = \frac{\ell a_n}{\ell^{n+1} - 1}$

- 1. Montrer qu'en posant, $\forall x \in \mathbb{R}$, $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, on définit une fonction de classe C^{∞} sur \mathbb{R} .
- 2. Déterminer les nombres réels x tels que f(x) = 0.