16 SUITES DE FONCTIONS

Dans ce chapitre, toutes les fonctions sont à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

I. CONVERGENCES

Définition 30 (Convergences)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur $A\subset\mathbb{R}$ à valeurs dans \mathbb{K} et f une fonction de A vers \mathbb{K} . On dit que

 $\rightarrow (f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur A lorsque, pour tout $x\in A$, $\lim_{n\to+\infty}f_n(x)=f(x)$, ou encore

$$\forall x \in A, \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow |f_n(x) - f(x)| < \varepsilon.$$

La fonction f est appelée limite simple de la suite de fonctions $(f_n)_{n \in \mathbb{N}}$.

 $\to (f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A lorsque, $\lim_{n\to+\infty} \|f_n-f\|_{\infty,A}=0$, ou encore

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, \forall x \in A, |f_n(x) - f(x)| < \varepsilon.$$

La fonction f est appelée limite uniforme de la suite de fonctions $(f_n)_{n \in \mathbb{N}}$.

→ $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur les compacts de A lorsque pour tout compact $K \subset A$, (f_n) converge uniformément vers f sur K.

Remarques:

- \rightarrow la convergence uniforme sur A entraine la convergence simple,
- → notamment la seule fonction vers laquelle la convergence peut être uniforme est la fonction limite simple
- → on a les propriétés de linéarité habituelles (sur les limites simples et uniformes)
- \rightarrow la convergence uniforme sur les compacts de A n'entraine pas la convergence uniforme sur A

Exercice 1 (CCP 9)

- 1. Soit X un ensemble, $(g_n)_{n\in\mathbb{N}}$ une suite de fonctions de X dans \mathbb{C} et g une fonction de X dans \mathbb{C} . Donner la définition de la convergence uniforme sur X de la suite de fonctions (g_n) vers la fonction g.
- 2. On pose $f_n(x) = \frac{n+2}{n+1}e^{-nx^2}$.
 - (a) Étudier la convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$.
 - (b) La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur $[0,+\infty[?]$
 - (c) Soit a > 0. La suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge-t-elle uniformément sur $[a; +\infty[?]]$
 - (d) La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur $]0,+\infty[?]$

Exercice 2 (CCP 13)

- 1. Soit (g_n) une suite de fonctions de X dans \mathbb{C} , X désignant un ensemble non vide quelconque. On suppose que, pout tout $n \in \mathbb{N}$, g_n est bornée et que la suite (g_n) converge uniformément sur X vers g. Démontrer que la fonction g est bornée.
- 2. On considère la suite $(f_n)_{n\in\mathbb{N}^*}$ de fonctions définies sur \mathbb{R} par :

$$f_n(x) = \begin{cases} n^2 x & \text{si} \quad |x| \le \frac{1}{n} \\ \frac{1}{x} & \text{si} \quad |x| > \frac{1}{n} \end{cases}$$

Prouver que $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} . La convergence est-elle uniforme sur \mathbb{R} ?

II. Propriétés

Propriété 53 (Continuité, limites)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A vers \mathbb{K} .

- → **continuité**: si (f_n) converge uniformément vers f sur A et, pour tout $n \in \mathbb{N}$, f_n est continue sur A (resp. en $a \in A$) alors f est continue sur A (resp. en $a \in A$).
- **permutation des limites**: si $a \in \overline{A}$, (f_n) converge uniformément vers f sur A et, pour tout $n \in \mathbb{N}$, f_n admet une limite finie $\ell_n \in \mathbb{K}$ en aalors la suite (ℓ_n) converge vers ℓ et $\lim_{x \to a} f(x) = \ell$.

Propriété 54 (Intégration/dérivation)

Si I est un intervalle de \mathbb{R} et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de I vers \mathbb{K} .

- **dérivation**: si, pour tout $n \in \mathbb{N}$, f_n est de classe \mathscr{C}^1 sur I, $(f_n)_{n \in \mathbb{N}}$ converge simplement vers f sur I et $(f'_n)_{n \in \mathbb{N}}$ uniformément vers g sur
- I alors f est de classe \mathscr{C}^1 sur I et f' = g. De plus $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur les segments de I. \rightarrow **classe** \mathscr{C}^k : si, pour tout $n \in \mathbb{N}$, f_n est de classe \mathscr{C}^k sur I, pour tout p < k, $(f_n^{(p)})_{n \in \mathbb{N}}$ converge simplement vers g_p sur I et $(f_n^{(k)})_{n \in \mathbb{N}}$ uniformément vers g_k sur I alors f est de classe \mathscr{C}^k sur I et $f^{(p)} = g_p$ pour $p \in [0; k]$. DE plus chaque convergence est uniforme sur les
- → **intégration**: si $(f_n)_{n \in \mathbb{N}}$ est une suite de fonctions continues qui converge uniformément vers f sur $[a,b] \subset \mathbb{R}$ alors $\lim_{n \to +\infty} \int_a^b f_n(t) \, dt =$
- $\int_{a}^{b} f(t) dt.$ \rightarrow **primitives**: $\sin(f_n)_{n \in \mathbb{N}}$ est une suite de fonctions continues qui converge uniformément vers f sur les segments de I et $a \in I$, alors (F_n) , où $F_n(x) = \int_a^x f_n(t) dt$, converge uniformément sur les segments vers $F: x \mapsto \int_a^x f_n(t) dt$.

Exercice 3

Soit
$$f_n(x) = \frac{2^n x}{1 + n2^n x^2}$$
 pour $x \in \mathbb{R}$.

- 1. Étudier la convergence simple sur \mathbb{R} de (f_n) .
- 2. Calculer $\int_0^1 f_n$ et $\lim_{n \to +\infty} \int_0^1 f_n$. La convergence est-elle uniforme?
- 3. Montrer que la convergence est uniforme sur tout $[a, +\infty[$, lorsque a > 0.

III. EXERCICES

CONVERGENCES DES SUITES DE FONCTIONS

Exercice 4

Étudier la convergence des suites de fonctions suivantes sur ℝ (convergence simple, uniforme, uniforme sur les compacts) :

a)
$$f_n(x) = \sin(\frac{x}{n})$$

d)
$$f_n(x) = \frac{nx^3}{1 + nx^2}$$

g)
$$f_n(x) = \inf(n, x^2/n)$$

b)
$$f_n(x) = \frac{1}{n}\sin(\frac{x}{n})$$

d)
$$f_n(x) = \frac{nx^3}{1 + nx^2}$$

e) $f_n(x) = \frac{x}{n(1 + x^n)}$
f) $f_n(x) = \frac{nx}{1 + n^3x^2}$

$$f_n(x) = nx^2 e^{-nx}$$

c)
$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$

f)
$$f_n(x) = \frac{nx}{1 + n^3 x^2}$$

92

i)
$$f_n(x) = e^{-x^n}$$

Exercice 5

Soit, pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $f_n(x) = \sin\left(\frac{n+1}{n}x\right)$.

- 1. Étudier la convergence simple de la suite de fonctions sur \mathbb{R} .
- 2. Montrer que la convergence est uniforme sur les segments [-A, A].
- 3. Montrer qu'on n'a pas convergence uniforme sur R.

Exercice 6 (Mines-Ponts MP)

Soit $n \in \mathbb{N}^*$. On définit la fonction g_n sur [0,1] par $g_n(t) = e^t(1-t/n)^n$.

- 1. Montrer que pour tout $t \in [0,1], |g_n'(t)| \le \frac{e^t}{n}$ puis que, pour tout $t \in [0,1], |e^{-t} (1-t/n)^n| \le \frac{t}{n}$.
- 2. Étudier la convergence simple de la suite de fonctions $(I_n)_{n\in\mathbb{N}^*}$ où

$$I_n(x) = \int_0^1 t^x (1 - \frac{t}{n})^n dt.$$

Étudier ensuite la convergence uniforme.

Exercice 7 (Mines MP 2012)

7.7

- 1. Soit (K_n) une suite décroissante de fermés de [a,b] d'intersection vide. Montrer qu'il existe n_0 tel que $K_{n_0} = \emptyset$.
- 2. Soit (f_n) une suite croissante de fonctions continues sur [a,b], convergeant simplement vers une fonction f continue sur [a,b]. Montrer que la convergence est uniforme (indication : poser $g_n = f f_n$ et utiliser, pour $\varepsilon > 0$ les ensembles $K_N = \{x \in [a,b], g_N(x) \ge \varepsilon\}$).

Exercice 8

Soit (f_n) une suite de fonctions K-lipschitzienne sur un segment [a,b] de \mathbb{R} (à valeurs réelles), qui converge simplement vers une fonction f.

- 1. Montrer que f est également K-lipschitzienne.
- 2. Montrer que la convergence est uniforme.

Exercice 9

Soit P_n une suite de polynômes tous de degré inférieur ou égal à N convergeant simplement sur [a,b] vers une fonction f. En utilisant l'interpolation de Lagrange en N+1 points distincts de [a,b], montrer que f est un polynôme de degré au plus N et prouver que la convergence est uniforme.

Exercice 10 (Centrale MP 2021)

Soient [a,b] un segment de \mathbb{R} avec $a < b, (f_n)_{n \ge 0}$ une suite de fonctions convexes définies sur [a,b]. On suppose que (f_n) converge simplement vers f sur [a,b].

- 1. Montrer que f est convexe.
- 2. Soient $\alpha, \beta \in \mathbb{R}$ tels que $a < \alpha < \beta < b$. Montrer qu'il existe $K \ge 0$ tel que, pour tout $n \in \mathbb{N}$ et pour tous $x, y \in [\alpha, \beta], |f_n(x) f_n(y)| \le K|x y|$.
- 3. En déduire que (f_n) converge uniformément sur $[\alpha, \beta]$. Y a-t-il convergence uniforme sur [a, b]? [a, b]?

RAPPELS: THÉORÈME DE CONVERGENCE DOMINÉE

Exercice 11

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue et bornée. On pose $I_n = \int_0^{+\infty} f(x)e^{-nx} dx$.

- 1. Déterminer $\lim_{n \to +\infty} I_n$, puis $L = \lim_{n \to +\infty} nI_n$.
- 2. On suppose f de classe \mathscr{C}^1 , de dérivée bornée et telle que $f'(0) \neq 0$. Déterminer un équivalent simple de $nI_n L$.

Exercice 12 (Mines MP 2021)

Soit $f \in \mathcal{C}^0([1, +\infty[, \mathbb{R})])$. Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}^+$, on pose $f_n(x) = \int_1^{1+x/n} nf(t^n) dt$. Étudier la convergence de la suite de fonctions $(f_n)_{n \ge 1}$.

Exercice 13

Soit $I_n = \int_0^1 \ln(1-t^n) dt$. Déterminer la limite ℓ de I_n , puis un équivalent de $I_n - \ell$.

93 année 2023/2024