Révisions sur la dénombrabilité et les familles sommables

- Rappels sur la dénombrabilité (via des injections dans $\mathbb N$ ou des surjections de $\mathbb N$, exemples, produit fini d'ensembles au plus dénombrable, réunion au plus dénombrable de parties au plus dénombrables, non-dénombrabilité de $\mathbb R$.
- Cas d'une famille de réels positifs $(u_i)_{i\in I}$ où I est dénombrable : définition sommabilité et somme, propriétés basiques (« linéarité », sous-famille) , équivalence avec la convergence de séries lorsque $I=\mathbb{N}$. Permutation de l'ordre des termes. Théorème de sommation par paquets comme équivalence
- Cas général : définition de la sommabilité, de la somme. Propriétés simples. Existence d'une partie finie à partir de laquelle on approche la somme à ε près. Théorème de sommation par paquets (admis), cas des séries doubles (Fubini)

Anneaux, idéaux, corps, arithmétique, polynômes

- Définitions et propriétés élémentaires sur les anneaux
- idéal d'un anneau commutatif. Intersections et sommes. Idéal engendré par un ou plusieurs éléments.
- Idéaux de \mathbb{Z} , de $\mathbb{K}[X]$.
- Anneau $\mathbb{Z}/n\mathbb{Z}$. $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.
- Éléments inversibles dans $\mathbb{Z}/n\mathbb{Z}$, indicatrice d'Euler, théorème chinois et calcul de $\varphi(n)$. Relation $a^{\varphi(n)} = 1$ si a est un inversible de $\mathbb{Z}/n\mathbb{Z}$.
- Révisions générales sur les polynômes. Arithmétique des polynômes dans $\mathbb{K}[X]$: pgcd de 2 et n polynômes, propriétés. Polynômes premiers entre eux et relation de Bezout.

Espaces vectoriels normés

Programme de la semaine dernière

Questions de cours

- 1/ Idéaux (définition), intersection et somme. Idéaux de $\mathbb{K}[X]$.
- 2/ Éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$. $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.
- 3/ Définition du PGCD de deux polynômes. Polynômes premiers entre-eux et caractérisation par la relation de Bézout.
- 4/ lorsque $m \wedge n = 1$, isomorphisme d'anneaux entre $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ et $\mathbb{Z}/mn\mathbb{Z}$.
- $5/\varphi(mn) = \varphi(m)\varphi(n)$ si $m \land n = 1$ (en admettant la question précédente) et détermination de $\varphi(n)$ si $n \ge 2$.
- 6/ Caractérisations de la continuité d'une application linéaire.
- 7/ Définition de |||f|||. Montrer que $|||\cdot|||$ est une norme.
- 8/ Définition de $\exp(A)$ (avec justification). Si $A = PBP^{-1}$ alors $\exp(A) = P.\exp(B).P^{-1}$.
- 9/ Continuité de $A \mapsto \exp(A)$ sur $M_n(\mathbb{K})$. La fonction $t \mapsto \exp(tA)$ est de classe \mathscr{C}^1 sur \mathbb{R} .