Les compléments sont des exemples/exercices importants qu'on a vu mais hors programme.

Révisions d'algèbre linéaire

- Espaces vectoriels, sous-espaces vectoriels : opérations, espace engendré par une partie *A*. Sommes et sommes directes de 2 et plusieurs sous-espaces, espaces supplémentaires
- Familles libres, génératrices, liées techniques d'indépendance linéaire. Cas particuliers : familles de polynômes de degré deux à deux distincts. Bases.
- Espaces de dimension finie. Théorèmes de la base incomplète. Dimension de sommes, sommes directes,
 \[
 \sum_{i=1}^{p} E_i \text{ est directe si et seulement si dim } \sum_{i=1}^{p} E_i = \sum_{i=1}^{p} \dim E_i.\]
 Base adaptée à une décomposition.

 Applications linéaires. Images directes et réciproques de sev. Image et noyau. Image de familles par des
- Applications linéaires. Images directes et réciproques de sev. Image et noyau. Image de familles par des applications linéaires. Application linéaire définie par ses restrictions sur des sev supplémentaires.
- Tout supplémentaire du noyau est isomorphe à l'image et formule du rang.
- · Projecteurs et projections. Symétries.
- Propriétés du rang, rang d'une composée, invariance par composition par un automorphisme.
- Hyperplans et formes linéaires, interpolation de Lagrange.
- Compléments: propriétés sur la suite $\ker f^k$ (strictement croissante puis constante), si f(x) est colinéaire à x pour tout x alors f est une homothétie, centre de $\mathscr{L}(E)$, théorèmes de factorisation (avec les images et avec les noyaux), $\dim \ker(g \circ f) \leq \dim \ker f + \dim \ker g$.

Semaine précédente : Révisions et compléments sur les groupes

- Groupes, sous-groupes monogènes et cycliques. Opérations sur les groupes et sous-groupes : produit, intersection, sous-groupe engendré par une partie. Morphismes de groupes, image et noyau.
- Construction du **groupe** ($\mathbb{Z}/n\mathbb{Z}, \overline{+}$). Générateurs de ($\mathbb{Z}/n\mathbb{Z}, +$), définition de $\varphi(n)$ calcul en admettant pour le moment $\varphi(mn) = \varphi(m)\varphi(n)$ si $m \wedge n = 1$.
- Groupes monogènes et isomorphisme avec \mathbb{Z} ou $\mathbb{Z}/n\mathbb{Z}$ (description de < x >). Ordre d'un élément.
- Théorème de Lagrange : l'ordre d'un élément divise l'ordre du groupe démo dans le cas commutatif.
- Compléments: un sous-groupe d'un groupe cyclique est cyclique. Si G est cyclique d'ordre n et d|n, il existe un unique sous-groupe cyclique d'ordre d (celui engendré entre autre par $x^{n/d}$ si x est un générateur de G). Relation $n = \sum_{d|n} \varphi(d)$. Ordre de x^k dans un groupe cyclique engendré par x. Théorème de Lagrange général.

Questions de cours

- 1/ Morphisme de groupes. L'image directe ou réciproque d'un sous-groupe est un sous-groupe.
- 2/ Théorème de Lagrange (sur l'ordre d'un élément). Démonstration dans le cas commutatif.
- 3/ Description d'un groupe monogène et isomorphisme avec \mathbb{Z} ou \mathbb{Z}/nZ .
- 4/ différentes caractérisations de la somme directe de n sous-espaces vectoriels (et démonstration)
- 5/ dim $\left(\sum_{i=1}^{p} F_i\right) \le \sum_{i=1}^{p} \dim(F_i)$ avec égalité si et seulement si la somme est directe
- 6/ isomorphisme du rang, formule du rang
- 7/ Démonstration de dim $ker(g \circ f) \leq dim ker f + dim ker g$.
- 8/ Polynômes d'interpolation de Lagrange : $x_1, ..., x_n$ deux à deux distincts existence d'un unique polynôme de $\mathbb{K}_{n-1}[X]$ tel que $P(x_i) = y_i$. Expression de ce polynôme.
- 9/ H est un hyperplan de E si et seulement si il existe $\varphi \in E^*$ non nulle telle que $H = \ker \varphi$. Deux équations de H sont proportionnelles.